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A procedure is described for reconstructing three-
dimensional objects from two-dimensional projec-
tions. The method is based both on the original
Crowther, DeRosier, and Klug (DeRosier, D.J., and
Klug, A. (1968), Nature 217, 130-134; Crowther, R.A,,
DeRosier, D.J., and Klug, A. (1970) Proc. R. Soc.
London A 317, 319-340) work on image reconstruc-
tions of icosahedral viruses and on the concept of
noncrystallographic symmetry (Rossmann, M.G.,
1995, Curr. Opin. Struct. Biol. 5, 650-655). The proce-
dure has been applied so far only to test data where
the objective has been the determination of particle
orientation, both ab initio and through the use of
model data.
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INTRODUCTION

A pair of stereoscopic images is sufficient to view
an object in three dimensions. The two images are
projections down axes differing in orientation by only
a few degrees and can be used both to view the object
and to compute its three-dimensional structure (Ross-
mann and Argos, 1980). However, the accuracy of the
three-dimensional reconstruction will depend on the
angular separation of the images and would improve
if the number of projected images were increased.
The same problem is encountered in reconstructing
an object from numerous electron-microscopic im-
ages representing projections down a random set of
axes. The larger number of images permits viewing
of the three-dimensional object with increased reso-
lution at a reduced noise level.

Techniques for reconstructing objects from electron-
microscopic projection data were originally devel-
oped by Crowther, DeRosier, and Klug (DeRosier and
Klug, 1968; Crowther et al., 1970a) and indepen-
dently by Hoppe (1974; Hoppe et al., 1974). These
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methods have had a tremendous impact on the study
of biological macromolecular structure, especially
since the advent of cryo-electron microscopy (cryo-
EM). A vast amount of information has been gath-
ered on the structure of viruses and their complexes
with antibodies (e.g., Prasad et al., 1990; Smith et al.,
1993) or receptors (Olson et al., 1993). The study of
viruses has depended largely on the early work by
Crowther (Crowther et al., 1970a,b; Crowther, 1971,
Crowther and Amos, 1972), which utilized icosahe-
dral symmetry to orient the individual images of
isometric viruses. One of the most difficult aspects
has been the determination of the orientation of
individual projected images. Until about 4 years ago,
the primary tool was the method of common lines
(Crowther, 1971), but recently alternative proce-
dures that depend on the comparison with homolo-
gous three-dimensional images have been developed
(Baker and Cheng, 1996). The early techniques were
based on Fourier analyses of the images (“reciprocal
space” methods). A variety of such techniques have
also been used even in the absence of particle
symmetry. Alternative techniques have been devel-
oped (cf. Frank, 1996) based on real space compari-
sons. These techniques have been especially useful
for the reconstruction of objects that either have no
symmetry (e.g., ribosomes (Frank et al., 1995)) or
have little symmetry (e.g., GroES (Saibil, 1996)).

Recently, cryo-EM reconstructions have been ex-
tended to almost 7-A resolution in the analysis of
hepatitis B cores (Bottcher et al., 1997; Conway et
al., 1997), where the secondary structure of the
capsid protein is starting to emerge. These advances
have been possible in part because of improved
instrumentation using field emission electron guns
to increase spatial coherence and because of the
development of methods to correct for the phase-
contrast transfer function when using a series of
differently focused images.

These advances in cryo-EM imaging are bringing
new topics of biological interest within range. For
instance, it has become apparent that many icosahe-
dral viruses have a significant amount of their
nucleic acid in an icosahedrally ordered form (Chen
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et al., 1989; Larson et al., 1993; Grimes et al., 1998),
suggesting that, possibly, much more of the nucleic
acid than seen in crystallographic electron density
maps has a unique structure. Thus, if the virus could
be oriented by virtue of its icosahedral coat and if a
selection were made among the 60 possible orienta-
tions of any one particle to match the internal
nucleic acid of another particle, then it might be
possible to obtain extensive information on the nucleic
acid structure and fold. In other cases, it has been
shown (Al Ani et al., 1979; Casjens and Hendrix,
1988) that nucleic acid is extruded from a single
portal of an otherwise highly symmetric particle. It
is, therefore, of interest to examine symmetric par-
ticles that have local distortions (e.g., at a phage
head portal) or in which the higher symmetry exists
for only a portion of the structure.

With these problems in mind, we consider here
procedures for image reconstruction from projected
images in conjunction with experience in noncrystal-
lographic-symmetry electron-density averaging as
used for solving crystal structures (Rossmann et al.,
1992; Rossmann, 1995; Kleywegt and Read, 1997).
We shall assume that the projection data have been
corrected for experimental deficiencies such as astig-
matism and the effects of the phase-contrast transfer
function. Although we borrow heavily from Crowther
et al. (1970a), we do not use spherical harmonics.
Furthermore, while Crowther requires reciprocal
space interpolation in only one dimension (to reduce
computational complexity), we use a general three-
dimensional, Cartesian-coordinate-based interpola-
tion expression.

This study has not yet progressed beyond develop-
ing the procedure with theoretical data. Whether
there are experimental advantages in these recon-
struction techniques will require tests on real data
and, indeed, such work is currently in progress using
the data for various $29 particles (Tao et al., 1998).

DEFINITIONS

The nomenclature defined below is that used by
Rossmann et al. (1992) in describing a procedure for
electron-density averaging. The object to be recon-
structed from a set of projections will be placed into
the “h-cell.” (The “h” and “p” in the terms “h-cell” and
“p-cell” originate in early attempts to use the known
lactate dehydrogenase structure—LDH in the h-
cell—to solve the unknown structure of glyceralde-
hyde-3-phosphate dehydrogenase—GAPDH in the
p-cell.) A point in this cell is defined as being at x,y,z
(or x in vector notation) in fractional coordinates.
The complex Fourier coefficients, F(h,k,I), correspond-
ing to the electron density in the h-cell, will be

defined by the indices (h,k,l), or h in vector notation.
If the reconstructed object has some symmetry, then
it is useful to place the object into the h-cell with as
many as possible of its symmetry elements coinci-
dent with the symmetry of the repeating lattice of
the h-cell. For instance, if the object has 222 symme-
try, then the center of the object can be placed on the
origin of the cell with its twofold axes along the
orthogonal cell directions. Thus, some or all of the
object’s symmetry elements can be included in the
crystallographic symmetry of the h-cell. The remain-
ing symmetry of the object will be noncrystallo-
graphic, being valid only locally within a confined
envelope around the object.

Each projection image can be defined with respect
to its own p-cell. Positions within this cell are defined
by the fractional coordinates u,v,w (or u in vector
notation) with the w direction being perpendicular to
the projected image. The indices of the complex
Fourier coefficients Q,q, representing the projected
density P(u,v) in the p-cell, are defined by (p,q) (or p
in vector notation). The orientation of a particular
projection relative to the object in the h-cell is given
by the transformation

x = [Dlu, 1)

where [D] is a 3 X 3 matrix dependent on three
rotation angles and the cell dimensions of both the
h- and p-cells (see below).

RECONSTRUCTION OF AN ASYMMETRIC OBJECT
FROM PROJECTION IMAGES

Let the three-dimensional electron density of the
reconstructed object in the h-cell be represented by

p(x.y,2).
Since P(u,v) is a projection along w (perpendicular
touandv),

+1/2
Pyv) = [ pxy.2) dw. ®)

Now, p(X,y,z) can be expressed as a Fourier summa-
tion in the h-cell with coefficients F(h,k,l). Therefore,

1 .
p(X.y,2) = — >, F(hk,l)e2mitxrky+1a)
V ikl

where V is the volume of the h-cell, or

1 :
PO = 2 Fret™ 3)
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in vector notation. Substituting (3) in (2),

+12 (1 )
P(u,v) = J\:v—uz(vg Fhez’”h'x) dw.

In order to perform the integration over w, it is
necessary to express X in terms of u by means of the
definition (1). Then, recognizing that each term in
the summation can be separately integrated,

1 +1/2 )
P(u,v) = v ; J;/:—l/z Fy, e [Plu gy

1 +1/2
I 2mi(p'u+q'v+r'w)

vV ; Fn J\:v:—1/2 € dw,
where

p, = dllh + lek + d31|
q, = d12h + d22k + d32| (4a)
r = dl3h + dzgk + d33|

and d;; are the elements of [D]. Or, in brief,
p’ = [D']h. (4b)

As w is the only variable,

1 T RS .
P(U,V) — v 2 FheZqﬂ(p u+q'v) j‘W:71/2 e2mr W dw
h

®)

sin wr’

!

1
I = e2wi(p’u+q’v)
V ; h r

Expression (5) gives the relationship between the
three-dimensional Fourier coefficients F,, and the
projected density P(u,v). Experimentally, it is P(u,v)
that is observed and derived from the electron-
microscope data, while the Fourier coefficients Fy
are to be determined from the collection of projected
images.

Now, the Fourier coefficients Q,, can be deter-
mined by numerical integration of the projection
density P(u,v) using the relationship

Quq = J Puv)e26u+ du v, ©6)

where A is the area of the p-cell in the u,v plane.

By substituting P(u,v) in expression (6) with (5), a
relationship can be found between the known projec-
tion coefficients Q,q and the unknown three-dimen-

sional Fourier coefficients F,. It follows that

qu:fA

X 672~n-i(pu+qv) du dv

sin mr’

1
— F e2wi(p’u+q’v)

Tr’

wr’

1 sinwr’ piip
= — 2mi(p'—p)u
v ; Fn J;?m e du
% f+1/2 e2-rri(q’—q)v dv
\% 2

=-1/

or

1
qu = VE I:hG‘hp! (7)

where

sinw(p’ — p) sinw(q' —q) sinar’ g
ap—p)  a@ - o ®

th =

If the orientation of the projected image is known
relative to the standard particle orientation in the
h-cell and is expressed in terms of the [D] matrix,
then (p’,q’,r’) can be calculated for a chosen set of
indices (h,k,I) using (4). Hence, Q,q could be calcu-
lated from the summation (7), given the three-
dimensional coefficients Fy, for any specific indices
(p,q). However, in practice, the coefficients Qp, are
known, while the F}, coefficients need to be deter-
mined. Given a sufficient number of Q,, coefficients,
it is then possible to solve the Egs. (7) for the required
three-dimensional Fourier coefficients F,. These can
then be used to compute a Fourier synthesis that
represents the reconstructed image in the h-cell.

It is unnecessary to evaluate all terms in the
summation over h in expression (7) as most of the
terms will be negligibly small. Only the terms for
whichp' = p=0,q9 —q=0, and r' = 0 will be
significant. Thus, using (4), only the (h,k,l) terms
that roughly satisfy the relationship

p = dllh + d21k + d31|
q = d12h + d22k + d32|
0= d13h + d23k + d33|

or
p h
q|=[D"k
0 I
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for a given pair of indices (p,q) need to be considered.
These terms are those that satisfy the plane
0 = dizsh + dyk + dgl, which is a plane in the
reciprocal space of the h-cell that is perpendicular to
the projection direction w.

In practice, it is useful to solve for h” for selected
indices (p,q), where

h// p
K'l=[D7T*4af. 9)
" 0

Thus, the (h,k,l) indices that will be associated with
significantly large values of Gy, are those integers
that lie close to (h",k”,1"). These can be substituted in
(4a) to obtain (p’,q’,r'), which are necessary to evalu-
ate Gy, from (8).

The summation in (7) is over all coefficients within
the limiting sphere of resolution. Thus, the summa-
tion can be rewritten as

1 hemisphere

qu:v 2

h

GnpFn + GroFR

hemisphere

:V;

[(Ghp + Ghp)An + iI(Gnp — Ghp)Bnl,

where Ay, and By, are the real and imaginary parts of
Fn. Note also that Gp, is unlikely to be significant
except for low-order data. In general, therefore,

hemisphere

Spq = E
h

hemisphere

ahp Ah and qu = ; bhp Bhl (10)

where S,, and T, are the known real and imaginary
parts of Quq, and where the coefficients a,, and by,
can be calculated from the assumed orientation of
the projection relative to the standard orientation of
the particle in the h-cell.

LEAST-SQUARES ANALYSIS

Because of the large experimental error in each
observational equation of type (10), it is necessary to
have a large excess of observational equations over
the number of three-dimensional Fourier coefficients
F, that are to be determined. These observational
equations need to be reduced to a set of normal
least-squares equations for solution.

For convenience, the unknown F, coefficients can
be numbered from 1 to m. If the particle has no
symmetry that can be incorporated into the h-cell
lattice, then the number of unknowns will be equal

to the number of F, coefficients in a hemisphere of
reciprocal space. However, if the particle of the h-cell
can be described as having N crystallographic asym-
metric units, then the number of unknowns will be
reduced by 1/N. Thus, the observational Eq. (10) can
be written as

m m
E a.i Ai =S al’ld E biBi =T.
i=1 i=1

The normal equations will then have the form

M-

n n
E ayay 2 aay
=1 =1

am | | F,
=1
n n n
. F2
E Az Ay 2 A8y Az Qm)
= =1 =1
n n n
F
2 Amidy E Amidy 2 Ami@m m
=1 =1 =1

(11)

2 Siay
=1
2 Siay
-1

n
; Siam

with a similar set for the imaginary set of equations.
The summations are carried out over the n coeffi-
cients Qpq in the k different projections. Before
inverting the normal equations, it will be necessary
to determine whether all Fourier coefficients F;, have
been adequately represented by large enough Gy,
values. If there is a nonuniform distribution of
projection orientations, some F, coefficients may not
have significant amplitude in Eqg. (7). This can be
determined by looking for small diagonal terms in
the normal equations. A useful criterion was found
by rejecting all equations whose diagonal terms were
less than 0.01 of the average value of the diagonal
terms. The row and column associated with such a
small diagonal term must then be eliminated prior to
matrix inversion.

THE NUMBER OF REQUIRED PROJECTIONS

It will be necessary to have more (usually far
more) observational equations, Q,,, than the num-
ber of unknowns, F;,, whose values are to be deter-
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mined. The number of Fy, coefficients will depend on
the unit cell size of the h-cell and the desired
resolution, R. Since the h-cell can be defined to be
only just larger than the largest dimension of the
unknown particle and as the p-cells represent differ-
ent projections of the same particle, it is generally
convenient to define the h- and p-cells as being of the
same size. For spherical objects such as viruses, it is
reasonable to make both the h- and p-cells cubic in
shape with a cell edge of a. It may sometimes be
convenient to use a trigonally shaped h-cell if, for
instance, the object can be assumed to contain a
threefold axis.

The volume of the reciprocal h-cell will be (1/a)3.
Thus, for a cubic cell of length a, the number of
reciprocal unit cells within a resolution of R
will be [4/3 w(1/R)3)/(1/a)3. Because of Friedel's law,
the number of independent reflections that
need to be determined will then be half of the
number of reciprocal unit cells, or [2/3 w(a/R)?]. If the
object to be reconstructed into the h-cell is as-
sumed to have symmetry that can be incorporated
into the h-cell lattice (“crystallographic symmetry”),
this will reduce the number of independent Fourier
coefficients F,. For instance, if an object has a
23-point group and the two- and threefold axes
of the object are defined to lie along the axes and
body diagonal of the cubic-shaped h-cell, then the
number of independent F,’s within the resolution
R will be reduced by 1/12. Hence, if symmetry
elements are defined to create N crystallographic
asymmetric units in the h-cell, then the number
of independent terms that need to be deter-
mined will be (1/N) (2/3) w(a/R)3. Now, using similar
arguments, the number of Q, coefficients in a projec-
tion will be (w/2)(a/R)?. Thus, if k different projec-
tions are available and considering the large error in
the observed Qy, coefficients, it will be necessary to
have

3

kﬂ a\? 12 a
= >>—=7n|=:
2| R N3T|R)
thatis,
41
k>>>—-——|—=|.
3N|R

Table I shows the theoretical lower limit (in the
absence of all noise) of the required number of
projected images for a successful reconstruction to
R A resolution when a = 500 A and N = 1 or 12. The
large error associated with low-dose EM images will,
however, greatly increase the number of images

TABLE |
Theoretical Minimum Number of Projected Images
Required for a Successful Reconstruction
in the Absence of All Noise?

Resolution (A) 40 30 20 15 10

p-cell
Minimum no. of projec-
tions required when
N=1 17 22 33 45 67
Minimum no. of projec-
tions required when
N =12 2 2 3 4 6
h-cell
No. of independent
unknown Fy's when
N=1 4091 9696 32725 77570 261799
No. of independent
unknown Fp’'s when
N =12 341 808 2727 6464 21817

Note. It is assumed that the particle has a diameter of about
500 A and has either N = 1-fold or N = 12-fold redundancy that
can be incorporated into the h-cell lattice.

2 The minimum number of required projections for an icosahe-
dral reconstruction will be reduced by 1/5 when the NCS re-
straints are included in the formation of the normal equations.
However, the number of Fn's to be determined remains un-
changed.

required for a useful reconstruction. Henderson
(1995) has considered the effect of error and con-
cludes that the number of useful images is in-
dependent of the size of the object. This result,
however, defies common sense as the amount of
information necessary to reconstruct a large particle
to a given resolution must be more than that re-
quired for a small particle.

RECONSTRUCTION OF OBJECTS THAT HAVE
NONCRYSTALLOGRAPHIC SYMMETRY

If the symmetry of the object can be matched with
the symmetry of the h-cell lattice (crystallographic
symmetry), then the number of unknowns can be
reduced by the crystallographic redundancy. The
orientation matrix [D] for each projected image will
then have to be determined (see below) with respect
to the assumed placement of the object’s symmetry
axes in the h-cell. For example, if an object’s as-
sumed twofold axis is aligned with the h-cell's b-axis,
then the Fourier coefficients Fy,, and Fgq will be
identical. Thus, in evaluating the coefficients G, for
Eqgs. (7) or (10), all Fourier coefficients with
indices (h,k,I) can be replaced by coefficients with
indices (h,k,I).

The highest symmetry of any periodic lattice is
432. Thus, not every symmetry operator of an object
can be incorporated into the crystallographic symme-
try. For instance, an icosahedral virus has 532
symmetry, but only the 23 tetrahedral symmetry
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(with a redundancy of 12) can be incorporated into
the lattice. The fivefold symmetry present in the
virus cannot be used to reduce the number of un-
known Fourier coefficients. Hence, this “noncrystal-
lographic” symmetry (NCS) must be treated in a
different manner.

In contrast, Crowther (1971; Crowther etal., 1970a)
aligns the highest n-fold rotation axis (e.g., a fivefold
axis if an icosahedron) along the z-axis of the stan-
dard h-cell, thus reducing the number of variables by
a factor of n. Then Crowther uses the remaining
symmetry axes (such as the two- and threefold axes
of an icosahedron) to increase the number of observa-
tions. This implies that in many cases (e.g., an
icosahedron) the present technique requires the
determination of fewer unknown coefficients. In addi-
tion, the method presented here is completely flex-
ible and general.

The electron density p(x) in the h-cell is equal
at all S NCS-related positions. Hence, p(x;) =
p(X2) = - - - = p(Xs). Now, F, is given by

Fn = Lp(x)e‘ZW‘h'X dx.

However, p(x) can be divided into S parts, each of
which can be separately integrated within the h-cell
and then summed to give F;,. That is,

f- )

where the integral is taken only over the volume U of
the object and assuming the rest of the cell has zero
density. Similar to the definition of (1) for [D] (which
relates a point in the p-cell to a point in the h-cell),
the relationship between NCS points within the
h-cell can be given as

e—2’n’ih-xs dX,

S
zmm

Xs = [Ci]x, (12)

where [C4] is the sth NCS operator relating a point X
in the h-cell to another point x also in the h-cell.
Then,

S
Fr= J pOe-2rinics dx, (13)
s=1

However, the density p(x) in the h-cell can be ex-
pressed as a Fourier summation such that

1 _
PO = 3 2 Fee™m i (14)
t

where the Fourier coefficients have indices s(s,t,u).
Substituting (14) in (13)

<|lm

Fh:

E E F, f o 2mi(t— [cI1h)x dx
n U

s=1

(15)

> FGnp,

t

<lmk
Mo

Il
-

S

where Gy, is the integral in the above expression. If,
for instance, the object is a spherical virus, then
the limits of the integral can be taken as a
sphere, in which case Gy; can be expressed analyti-
cally as in expression (8) with an argument of
0 = 2mH.72, where H = |(t — [C]]h)| and .Z is the
radius of the limiting sphere representing the viral
envelope. Note that the coefficients, Gy, of these
equations are always the same, independent
of what orientation had been assumed to derive
Eq. (10).

Equation (15) can be written for all m independent
Fourier coefficients F,, within the limit of the desired
resolution. The number of significant terms in each
equation will depend on the NCS redundancy S. The
greater the redundancy, the greater will be the
number of terms with significantly large (approach-
ing unity) Gy, terms and, hence, restricting the
possible relationships among the Fourier coeffi-
cients. Each Eq. (15) will be an observational equa-
tion relating the m unknown F, coefficients. These
are of the same form as Eqs. (7) or (10) relating the
known projection Fourier coefficients Qyq with the
unknown three-dimensional Fourier coefficients Fy,.
Hence, Eq. (15) can be added to the normal Egs. (11)
prior to inversion. Thus, while the crystallographic
symmetry elements can be constrained to determine
only the crystallographic symmetry-independent Fy,
terms, the NCS is applied as a series of restraints to
impose a desired relationship among the F,’s.

FINDING THE ORIENTATION OF AN OBJECT

The observational Eqgs. (7) or (10) depend upon a
knowledge of the object’s orientation given by [D]
(Eq. (1)). If a false value of [D] were used, it would not
be possible to find a set of Fy, coefficients that would
satisfy Egs. (7) or (10). Thus, a technique for finding
the orientation of an object is to test all possible
orientations of the particle in the h-cell. The normal
equations are then set up for each orientation and
solved for A, and By, from which F,, is calculated. The
F;, values can be substituted back in the right-hand
sides of (10) to obtain a calculated set of Qpq caic- The
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calculated Qg caic Values are then compared with the
observed values Q. o5 (derived from a Fourier trans-
form of the projected densities).

The search algorithm can be stated in terms of the
following instructions.

1. Define the arbitrarily chosen asymmetric unit
of the N crystallographic symmetry elements in the
h-cell.

2. Select a point given by polar coordinates (k,s,$)
within the reference crystallographic asymmetric
unit of the h-cell and calculate the orientation matrix
[D] relating the p- to the h-cell.

3. Determine the coefficients a,, and by, of the
observational Egs. (10) for each two-dimensional
Fourier coefficient Q00 Of the selected projection
image. Add the contribution of each observa-
tional equation to the normal equations as shown
by (11).

4. Add the NCS restraints given by (15) if appro-
priate. Note that the coefficients of the NCS restrain-
ing equations are the same for every orientation. The
NCS restraints merely specify relationships among
the F,, Fourier coefficients.

5. Solve the normal equations for the unknown,
three-dimensional, h-cell Fourier coefficients Ay
and B;,.

6. Substitute the calculated values of A, and By,
into the right-hand sides of (10) to obtain calculated
values of Qg calc-

7. Compare Qg,s With Q. by using the four
different criteria

E ‘(‘Qobs| - k‘Qcalcm
2 ‘Qobs|

X 100 (factor based on amplitude),

Rl=

where k is a scale factor and the sum is over all n Qs
values for the projection within the chosen resolu-
tion limits;

2 |(0Lobs - 0Lcalc)‘
R2 = .

= (factor based on phases),

where ags and oy are the phases of Qg and
Qcaler @and their difference is taken as being the
shortest distance around a circle of phases from 0°

to 360°;
R3 =

E [| Qobs‘2 + ‘Qcalc|2 - Z‘QobsHQcalc‘ COS (Ctcalc — Qtops)]
n

1/2
E ‘Qobs‘z ' E ‘Qcalc‘z
n n

X 100 (factor based on amplitudes and phase vectors);

and

2 (<| Qobs ‘> - ‘Qobs‘)«‘Qcalc ‘) - ‘Qcalc‘)

n

CC =

2 (<| Qobs ‘> - ‘Qobs ‘)2

1/2
X 2 ((‘ Qcalc ‘) - ‘Qcalc‘)z
(based on amplitudes),

where CC is the correlation coefficient.

The Gy, values in (7), which give rise to the a,, and
bhp coefficients in (10), are dependent only on the
orientation of the projection direction w in the h-cell.
However, the coefficients Qq in (7), corresponding to
the Spq and Ty, terms in (10), are determined from
the projected image data. Thus, the normal Egs. (11)
need only be inverted once for each direction w.
Search for the rotation, k, about w can be achieved
by interpolating Q,, at rotated values of the two-
dimensional projected p-cell lattice, giving rise to
different Sy, and T, terms for each value of k. Thus,
the search over « for a given orientation w is fast.

8. Go back to step 2 until all points have been
explored. Map the result and look for minima in Ry,
R,, and R; or maxima in CC to obtain the object’s
orientation.

The different criteria may not always give the
same discrimination (see, for instance, Table VII).
However, in general R; appears to be the most
sensitive criterion, being dependent on both ampli-
tudes and phases.

The above procedure is useful for finding the
orientation of a particle with ample symmetry in the
absence of any other structural knowledge. It is,
therefore, akin to the “common-lines” procedure of
Crowther et al. (1970a) and could be compared to a
“self-rotation function” in crystallography (Ross-
mann and Blow, 1962). Although these calculations
are quite time-consuming, the orientation of any
number of projections can be determined simulta-
neously because the right-hand sides of (10) are
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dependent only on (k,5,$) and not on Q. Thus, the
right-hand sides of (10) need only be computed and
inverted once and then used to examine the orienta-
tion of each projection.

When a reasonable three-dimensional model of the
object is already available, say by combining the
results of a few initial projections, the resultant Fy,
values can be used as in steps 6, 7, and 8 above to
determine which projection of the current model
gives two-dimensional Q. coefficients closest to the
observed set. This procedure is not only much faster,
but gives better results provided a reasonable
starting Fy, set is available. It is equivalent to the
polar Fourier transform (PFT) method (Baker and
Cheng, 1996) or a cross-rotation function (Ross-
mann and Blow, 1962) against a known model in
crystallography.

DEFINING A COMMON ORIGIN IN EACH
PROJECTED IMAGE

The phases of the observed Qg Fourier coefficients
will depend on the selected origin within the image.
Furthermore, on combining data from each image
(each Q4 from every image gives rise to an observa-
tional Eq. (7) or (10)), it was assumed that the
orientational relationship (1) places the common
projection origin onto the origin of the h-cell. A
reasonable common projection origin can be defined
moderately easily for spherical particles by estimat-
ing the site of the center of the particle, although this
may need a little refinement. A search over a much
larger area will be required for an asymmetric object.

A shift in the projection origin to the point (Au,Av)
will change the phase of the Qp, coefficients by
2m(pAu + gAv). This change will affect only the values
of S and T in the left-hand sides of Egs. (10). Since the
matrix need only be inverted once for the given (k,s,d)
value, the additional search over Au and Av is fast.

X

MATRIX ALGEBRA

Let the h-cell coordinate axes be x,y,z. These will
now be rotated to correspond to the projected image
of the object in the p-cell with axes u,v,w. First,
rotate the x,y,z system about z by s to place the axes
atx',y’,z". Then, rotate about x’ by ¢ to place the axes
at x"y",z". Finally, rotate by « about 2" to place the
axes at x”,y”,z" where these axial directions are now
coincident with u,v,w. Hence,

u CoSky Sinkz 0)/1 0 0
V|=|—-sinkg sinkg 0|0 cosd, sind,
W, 0 0 1/10 —sind, cos o,
cosd;  siny; 0) (X
X |=siny; cosy; O ||y
0 0 1/\z
=[D™]

by comparison with Eq. (1).

If the object to be reconstructed is an icosahedron
with 532 symmetry, it is convenient to orient the
icosahedral axes along the x,y,z axes of the h-cell.
However, that still allows two different orientations
of the icosahedron related by a 90° rotation about
any one of the h-cell axes. The definition of the
standard icosahedral orientation used in the results
given here is shown in Fig. 1. This icosahedron can
be generated by applying in order the operators
given in Table Il.

DIFFERENTIATING BETWEEN CRYSTALLOGRAPHIC
AND NONCRYSTALLOGRAPHIC SYMMETRY

The assumed symmetry of the object to be recon-
structed from projection data can be given in terms

FIG. 1. Definition of the limits of an icosahedral asymmetric unit. (a) The polar coordinates (x,l5,b). (b) Stereographic projection
showing great circles through icosahedral twofold axes and the limits of one, arbitrarily selected, asymmetric unit (shaded).
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TABLE 11
Sequential Operators That Generate 532 Symmetry?
Number K ] ¢
1 72.0 31.71747 —90.0
2 180.0 36.0 —148.28253
3 180.0 36.0 148.28253
4 120.0 57.7356 —45.0

a The definition of the polar coordinates is the same as for those
defined by Rossmann and Blow (1962).

of a sequential series of symmetry operations defined
by the polar coordinates (k,,¢). Table Il gives an
example for generating an icosahedral distribution
of 60 points in the h-cell. If the h-cell is defined as
being of cubic shape, these 60 points can be sepa-
rated into 5 sets of 12 each, where the 12 points
within a set are related by the crystallographic
symmetry of the h-cell lattice. In order to compute
the coefficients in Eqgs. (10), it will be necessary to
select only the crystallographic symmetry operators,
whereas the coefficients in Eq. (15) depend on the
noncrystallographic symmetries. Thus, the opera-
tors that define the full symmetry of the object in the
h-cell must be separated into crystallographic and
noncrystallographic operators with respect to the
cell parameters that were used to define the h-cell.
Let [Rg] (s =1, 2,...,S) be the rotation matrices
generated by the sequential symmetry operators
such as those given in Table Il. Let [«] and [B] be
deorthogonalization and orthogonalization matrices
for the h-cell (see Rossmann and Blow, 1962). Then,

Xs = [o][RJ][B]X (16)

(Rossmann and Blow, 1962) and

[C] = [o][R][B]-

Now, if this represents a crystallographic operation
and if x is the position of a lattice point, then X,
should also be a lattice point. Thus, if x is the point
(100), then xg should have coordinates that are
integers to within rounding error. Testing the points
(100), (010), and (001) in turn will, therefore, estab-
lish whether the operation is a crystallographic
operation. All other operators will be noncrystallo-
graphic.

DEFINING THE ASYMMETRIC UNIT IN REAL
AND RECIPROCAL SPACE

When exploring the possible orientation of a pro-
jected object relative to the orientation of the symme-
try elements in the h-cell, it is necessary only to
explore the asymmetric unit of the object. There will

be an equivalent orientation for particular (k,s,b)
angles in each of the object's asymmetric units. For
instance, if the object has icosahedral symmetry,
then the asymmetric unit can be defined as a tri-
angle limited by a fivefold axis and two threefold
axes (Fig. 1). It will, therefore, be necessary to
generate a set of (x,,p) that are limited to an
asymmetric unit. This can be readily achieved by
exploring all angles in the range 0 = k < 360°, 0 =
< 180° 0 = ¢ < 360° from which those in the
asymmetric unit are then selected as follows. The
h-cell coordinates are calculated for each set of
angles (x,s,d) from

X = sin { cos ¢
Y =-sinysind|. a7
Z = cos s

All S symmetry-related positions are then calculated
using the matrices [Rg] (s =1, 2,...,S) and sorted
in terms of Z (most significant) and X (least signifi-
cant). Then, arbitrarily always selecting the top
coordinates from the sorted list is equivalent to
selecting the coordinate within the asymmetric unit
of the object. Hence, if the original X,Y,Z is the same
as that at the top of the sorted list, then the chosen
(x, Ur,d) angles must be within the asymmetric unit of
the object.

The same technique can be used to define the
asymmetric unit of reciprocal space. However, in this
case, the symmetry operators will be the crystallo-
graphic operators doubled by virtue of an additional
center of symmetry at the origin of reciprocal space.
As the operators were defined for real space (Table
I1), the operators in reciprocal space, when ex-
pressed as a rotation matrix, will be the transpose of
those in real space. The Fourier coefficients (limited
to a selected resolution limit) found to be in the asymmet-
ric unit of reciprocal space are numbered in the se-
guence in which they are generated. That will then be
the sequence of unknowns (1 to m) used for Egs. (11).

REAL SPACE VERSUS RECIPROCAL SPACE

Although the above procedures have been de-
scribed in reciprocal space, very similar procedures
can be used in real space. In reciprocal space, the
two-dimensional Fourier coefficients Q,q, correspond-
ing to various projections P(u,v), were used to deter-
mine the Fourier coefficients F,, representing the
unknown object in three dimensions. It would be
equally possible to take the projected densities P(u,v)
and solve directly for the densities p(x,y,z). The h-cell
can be divided into a three-dimensional grid using a
raster size commensurate to the resolution of the
data. The asymmetric unit in the h-cell can be
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defined as above, and the grid points within the
asymmetric unit can be numbered sequentially. The
problem is then to determine the electron density at
each of the numbered grid points.

Any projection point P(u,v) corresponds to the sum
of the electron density along a line, w, normal to the
projection as given by (2). The density along any
given line along w can be represented by densities at
a series of grid points separated by a distance that is
about the same as the distance between the grid
points in the h-cell. Each of these points will be
surrounded by numbered grid points in the h-cell
grid. Thus, if the density in the h-cell were known,
then the density at the points along the line w could
be interpolated from the, say, eight surrounding
h-cell grid points. For instance, the density at the
point u,v,w can be expressed as

8
p(u,v,w) = El aip(XiYinZi), (18)

where i signifies the eight surrounding points used
for interpolation and a; is the interpolant whose
value will depend on the distance of the point
u,v,w from the point x;,y;,z;. Thus, combining (2) and
(18) gives an expression of the density P(u,v) in
terms of the known interpolants a; and the unknown
densities pi(x,y,z). Whenever a density p(x,y,z) is
required for interpolation, but is outside the asym-
metric unit of the h-cell, then the symmetry-
equivalent density must be used from within the
asymmetric unit. The expression (18) represents the
observational equations, which can then be solved
for p(x,y,z) in the same manner as was used for
solution of the equivalent reciprocal space Egs. (7)
or (10).

There is, however, an important difference be-
tween real and reciprocal space, namely the number
of unknowns that need to be determined. Because in
real space it is necessary to sample the density
sufficiently closely to obtain a realistic continuous
distribution, it is generally necessary to sample
density at intervals equivalent to at least one-third
of the resolution. Thus, in three dimensions the
number of unknowns that need to be solved will be
about 27 times greater in real space than in recipro-
cal space. This creates an enormous computational
burden, even for problems at very low resolution. For
this reason, it is better to employ reciprocal space,
although real space is easier to comprehend.

PHASE EXTENSION TO HIGHER RESOLUTION

The number of unknowns that need to be deter-
mined rises in proportion to the cube of the resolu-
tion. For an object of 500-A diameter with icosahe-

dral symmetry, it is necessary to solve a linear 3412
diagonally symmetric matrix to determine the un-
known Fy, coefficients to 40-A resolution (Table 1).
This is not an especially severe problem on even a
slow modern workstation. However, at 10-A resolu-
tion the problem has escalated to a 21 8172 symmet-
ric matrix.

Experience with phase extension for crystallo-
graphic electron density averaging (Rossmann, 1990)
suggests a technique for reducing the computing
effort. Fourier coefficients F,, at low resolution can be
determined initially, and these are unlikely to change
significantly as the resolution is extended. Hence,
their values can be assumed and taken to the
right-hand side of Egs. (7) or (10), thus reducing the
number of unknowns that need to be solved simulta-
neously. This procedure can be used to further
extend the resolution in steps. The lowest resolution
phases can be redetermined, this time accepting all
the already determined coefficients at higher resolu-
tion. Unless the orientation of the individual projec-
tions is refined, the matrices for determining F, at
each resolution extension will not change from cycle
to cycle. Thus, it will be fast to repeatedly cycle over
successive resolution ranges for phase improve-
ments between phase extensions.

TEST CALCULATIONS

The icosahedral atomic structure of human rhino-
virus 16 (HRV16) (Oliveiraet al., 1993) was used as a
test model for the reconstruction procedure de-
scribed above. The maximum external diameter of
this virus is 315 A. The atomic model (Protein Data
Bank Accession No. 1AYN) was placed into a cubic
cell with a = 400 A, with the icosahedral axes
oriented as given in Table Il and shown in Fig. 1b.
Structure factors were calculated to 10-A resolution,
although the current tests used only data to 40-A
(in some cases) or 35-A (in other cases) resolution.

TABLE 111

The Rotation Function Peaks?2 for k = 72°
at 40-A Resolution

Peak Rotation Number of o above
no. Y ¢ function value  mean background®
1 30.0  270.00 69.3 3.64
2 15.0 258.76 14.8 0.00
3 16.5  241.72 14.4 —0.03
4 18.0 23212 13.9 —0.06
5 18.0  345.80 10.2 —-0.31

Note. The values are for the HRV16 structure placed into the
h-cell in a standard orientation.

a A total of five peaks were found in a search with 1.5° intervals
iny.

b Calculated from all points at 1.5° intervals within the icosahe-
dral asymmetric unit.
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TABLE IV

Polar Angles Defining the Orientations
of Four Arbitrary Projections

Number of independent
coefficients, Qpq, at

Projection K i\ $ 35-A resolution
1 0.0 16.5 308.57 206
2 0.0 12.0 244.80 206
3 0.0 105 270.00 206
4 0.0 1.5 225.00 206

The first test was to check that the virus orienta-
tion was correct by calculating a rotation function
(Rossmann and Blow, 1962) evaluated at 1.5° inter-
vals in ¢ and correspondingly equally spaced values
in ¢ within the icosahedral asymmetric unit. This
was easily performed with the routine used for
setting the noncrystallographic constraints with Egs.
(15). A general peak-picking routine selected explicit
peaks, as opposed to merely seeking grid points with
large values of the function. The results showed
peaks that were well above background at the antici-
pated NCS positions (Table I11).

The Fourier coefficients for four different projec-
tions (Table 1V) were calculated using expression (7).
In this calculation, as well as in all subsequent
calculations, the Gy, coefficients were used with a
3 X 3 X 3 interpolation box with its center closest to
the nonintegral point (h”,k”,1") (see expression (9)).
The outside radius of the virus was assumed to be

170 A for these calculations. This will truncate the
expansion in G just before the first node.

The four sets of two-dimensional Fourier coeffi-
cients were then used in various combinations to
re-create the 35-A resolution F,, data set. The “recon-
stituted” 308 independent F;, coefficients could then
be compared with the original “true” coefficients to
determine how well the procedure had succeeded
(Table V). With four projections, using no NCS
restraints, the results were very satisfactory. There
was little difference when three projections were
used, although the R-factors were very slightly worse.
However, with two projections, the number of obser-
vations was distinctly worse, particularly when cer-
tain rather similar projections were used. Using only
one projection, where the number of Q, coefficients
was less than the number of F,, coefficients, the
results were essentially random (Table V). However,
on applying NCS restraints, one projection was
ample for producing a good reconstruction of the
original Fy, coefficients.

The next test was to determine whether the orien-
tation of a projection could be determined given at
least an approximate set of F, values. For this, a
set of F}, values was reconstructed using projections
2, 3, and 4 with NCS restraints (Table 1V), and these
were used to find the orientation of projection 1. A
search was conducted over s, within the icosahe-
dral asymmetric unit using 1.5° intervals in {. ¢
was computed (as explained for the rotation func-
tion) to give 1.5° between projection normals for any

TABLE V
Reconstruction of 308 Three-Dimensional HRV16 F;, Coefficients to 35-A Resolution

(a) Using 4 projections (1, 2, 3, and 4 in Table 1V)

(i) With fivefold NCS restraints (number of solvable? F, values was 308)

Resolution (A) 110.7 78.3 63.9 55.3 49.5 45.2 41.8 39.1 36.9 35.0
Scale (k) 0.969 1.008 0.991 1.023 1.049 1.093 1.143 1.152 1.329 1.031
R; (amplitudes, %) 22.1 12.3 7.3 7.0 9.5 11.1 215 16.4 26.5 26.8
R, (phases, °) 11.7 12.2 1.9 15.8 11.0 9.2 16.4 11.2 20.0 22.0
(i) Without restraints (number of solvable? F, values was 259)
Scale (k) 1.002 0.994 1.000 1.012 1.003 0.948 0.982 1.001 1.001 0.992
R; (amplitudes, %) 0.7 2.1 2.3 2.8 2.0 9.5 6.8 5.2 2.7 2.0
R, (phases, °) 4.0 0.5 0.4 2.1 2.7 2.2 3.9 1.3 1.6 2.6
(b) Using 3 projections (1, 2, and 3 in Table 1V)
(i) With fivefold NCS restraints (number of solvable? Fy, values was 308)
Resolution (A) 110.7 78.3 63.9 55.3 49.5 45.2 41.8 39.1 36.9 35.0
Scale (k) 0.970 1.034 1.027 1.042 1.065 1.171 1.131 1.229 1.321 1.104
R; (amplitudes, %) 22.1 15.6 9.1 7.8 9.5 12.4 21.8 225 27.6 33.9
R, (phases, °) 11.7 19.8 2.3 10.5 12.3 13.9 20.4 154 21.1 26.3
(ii) Without restraints (number of solvable? Fy, values was 245)
Scale (k) 1.002 1.001 0.989 1.039 1.019 0.954 0.971 1.014 1.010 0.988
R; (amplitudes, %) 0.9 3.2 7.2 8.4 51 16.7 10.7 7.2 4.4 29
R> (phases, °) 4.2 14 0.8 4.0 4.2 5.1 6.2 1.2 2.0 4.0
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TABLE V—Continued

(c) Using 2 projections (1 and 2 in Table 1V)

(i) With fivefold NCS restraints (number of solvable? Fy, values was 308)

Resolution (A) 110.7 78.3 63.9 55.3 49.5 45.2 41.8 39.1 36.9 35.0
Scale (k) 0.964 1.039 1.052 1.057 1.087 1.194 1.144 1.266 1.348 1.146
R; (amplitudes, %) 23.2 18.4 11.1 9.3 10.7 151 23.8 22.1 29.6 34.6
R, (phases, °) 11.8 25.3 2.6 13.9 13.6 14.7 24.1 16.5 20.9 26.8
(i) Without restraints (number of solvable? Fy, values was 244)
Scale (k) 1.005 1.006 0.989 1.052 1.034 0.924 0.952 1.032 0.987 0.964
R; (amplitudes, %) 1.4 4.5 9.0 10.8 104 19.7 17.8 171 7.7 7.1
R, (phases, °) 5.5 2.7 0.9 7.2 5.5 9.5 8.6 35 8.3 5.1
(d) Using 1 projection only (1 in Table 1V)
(i) With fivefold NCS restraints (number of solvable? F, values was 308)
Resolution (A) 110.7 78.3 63.9 55.3 49.5 45.2 41.8 39.1 36.9 35.0
Scale (k) 0.935 1.035 1.133 1.073 1.145 1.232 1.216 1.255 1.417 1.171
R; (amplitudes, %) 26.0 27.4 18.4 15.8 11.8 18.2 26.3 25.2 30.8 37.7
R, (phases, °) 11.9 35.4 12.7 23.0 15.8 22.5 22.0 17.9 25.5 28.5
(ii) Without restraints (number of solvable? F, values was 85)
Scale (k) 0.974 0.562 0.185 0.038 0.148 0.054 0.081 0.071 0.122 0.076
R; (amplitudes, %) 5.8 63.2 85.4 143.9 75.1 92.9 111.1 90.2 91.6 133.3
R; (phases, °) 22.4 45.3 75.6 74.2 91.1 75.6 88.2 7.7 83.5 60.8

Note. The two-dimensional Fourier projection coefficients Qpqops Were used to compute the three-dimensional Fourier Fy, coefficients.
These were then used to recalculate the two-dimensional Qpq caic coefficients for comparison with the original Qpq obs-
a The number of solvable Fy values equals those whose diagonal terms in the normal equations were greater than 0.01 of the average

value of all the diagonal terms.

specific value of . The satisfactory results are given
in Table VI.

Finally, a search was calculated where no prior
information on the F,, values was assumed to be
available. The data for projection 1 were used to

TABLE VI
Orientation Search for Projection 1 Given
Three-dimensional F, Coefficients Calculated
from Projections 2, 3, and 4

calculate a set of Fy, values using NCS restraints.
These were then used to obtain a calculated set of
Qpq that were compared with the corresponding
observed values. The results are given in Table VII
and also show acceptable results, but not as good as

TABLE VII
Orientation Search for Projection 1 Given the Projection
Two-Dimensional Qyq Fourier Coefficients
to 35-A Resolution

Ry R2 Rs R: R Rs
Peak (amp) (phases) (vec) Peak (amp) (phases) (vec)
No. ] b (%) ©) (%) cca ab No. 7 b (%) ©) (%) cca ab

1 16,5 308.57 8.7 24.1 13.4 0.9749 4.32 1 165 308.57 9.6 31.6 13.1  0.9747 2.52
2 195 24585 237 51.6 74.7 0.7839 2.56 2 195 30293 155 46.6 29.5 0.9218 1.40
3 225 25043 295 67.6 131.4 0.6637 0.94 3 18.0 33158 17.9 33.6 29.7 0.9077 1.39
4 45 360.00 333 73.6 139.1 0.6269 0.72 4 150 21938 153 38.8 31.2 0.9282 1.28
5 300 27148 334 79.3 139.7 0.5781 0.70 5 195 24585 146 43.7 32.4 0.9319 1.20
14 105 21273 30.1 84.3 194.0 0.6235 —0.86 24 30.0 271.48 23.0 62.0 69.5 0.8237 -1.32

Note. Shown are individual peaks sorted by Rz (vec) (%). A total
of 14 peaks were found in the search conducted with 1.5° intervals
iny.

a CC is correlation coefficient.

b & is the number of standard deviations above the mean for all
calculated values of Rz (vec) within the noncrystallographic
asymmetric unit.

Note. Shown are individual peaks sorted by Rz (vec) (%). A total
of 24 peaks were found in the search conducted with 1.5° intervals
iny.

a CC is correlation coefficient.

b ¢ is the number of standard deviations above the mean for all
calculated values of Rz (vec) within the noncrystallographic
asymmetric unit.
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those obtained when an approximate set of F,, values
was already available.

CONCLUSIONS

The experiments with HRV16 established that
procedures discussed here are successful in the case
of perfect data. Testing with real experimental data
(Tao et al., 1998) has only just begun. The procedure
discussed here requires further development. A posi-
tional peak search has not yet been implemented,
nor has the stepwise phase extension been tested.
Least of all has there been an attempt to find a specific
orientation of the RNA or DNA component in viruses or
to examine other partially asymmetric objects using
parts of the structure with higher symmetry. How-
ever, the techniques are completely general and can
be made to accept any arbitrary symmetry.
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