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A procedure is described for reconstructing three-
imensional objects from two-dimensional projec-
ions. The method is based both on the original
rowther, DeRosier, and Klug (DeRosier, D.J., and
lug, A. (1968), Nature 217, 130–134; Crowther, R.A.,
eRosier, D.J., and Klug, A. (1970) Proc. R. Soc.
ondon A 317, 319–340) work on image reconstruc-
ions of icosahedral viruses and on the concept of
oncrystallographic symmetry (Rossmann, M.G.,
995, Curr. Opin. Struct. Biol. 5, 650–655). The proce-
ure has been applied so far only to test data where
he objective has been the determination of particle
rientation, both ab initio and through the use of
odel data. r 1999 Academic Press

Key Words: electron microscopy; image reconstruc-
ion; noncrystallographic symmetry; partially sym-
etric objects.

INTRODUCTION

A pair of stereoscopic images is sufficient to view
n object in three dimensions. The two images are
rojections down axes differing in orientation by only
few degrees and can be used both to view the object
nd to compute its three-dimensional structure (Ross-
ann and Argos, 1980). However, the accuracy of the

hree-dimensional reconstruction will depend on the
ngular separation of the images and would improve
f the number of projected images were increased.
he same problem is encountered in reconstructing
n object from numerous electron-microscopic im-
ges representing projections down a random set of
xes. The larger number of images permits viewing
f the three-dimensional object with increased reso-
ution at a reduced noise level.

Techniques for reconstructing objects from electron-
icroscopic projection data were originally devel-

ped by Crowther, DeRosier, and Klug (DeRosier and
lug, 1968; Crowther et al., 1970a) and indepen-
ently by Hoppe (1974; Hoppe et al., 1974). These

1 To whom correspondence should be addressed. Fax: (765)

n96-1189.
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ethods have had a tremendous impact on the study
f biological macromolecular structure, especially
ince the advent of cryo-electron microscopy (cryo-
M). A vast amount of information has been gath-
red on the structure of viruses and their complexes
ith antibodies (e.g., Prasad et al., 1990; Smith et al.,
993) or receptors (Olson et al., 1993). The study of
iruses has depended largely on the early work by
rowther (Crowther et al., 1970a,b; Crowther, 1971;
rowther and Amos, 1972), which utilized icosahe-
ral symmetry to orient the individual images of
sometric viruses. One of the most difficult aspects
as been the determination of the orientation of

ndividual projected images. Until about 4 years ago,
he primary tool was the method of common lines
Crowther, 1971), but recently alternative proce-
ures that depend on the comparison with homolo-
ous three-dimensional images have been developed
Baker and Cheng, 1996). The early techniques were
ased on Fourier analyses of the images (‘‘reciprocal
pace’’ methods). A variety of such techniques have
lso been used even in the absence of particle
ymmetry. Alternative techniques have been devel-
ped (cf. Frank, 1996) based on real space compari-
ons. These techniques have been especially useful
or the reconstruction of objects that either have no
ymmetry (e.g., ribosomes (Frank et al., 1995)) or
ave little symmetry (e.g., GroES (Saibil, 1996)).
Recently, cryo-EM reconstructions have been ex-

ended to almost 7-Å resolution in the analysis of
epatitis B cores (Böttcher et al., 1997; Conway et
l., 1997), where the secondary structure of the
apsid protein is starting to emerge. These advances
ave been possible in part because of improved

nstrumentation using field emission electron guns
o increase spatial coherence and because of the
evelopment of methods to correct for the phase-
ontrast transfer function when using a series of
ifferently focused images.
These advances in cryo-EM imaging are bringing

ew topics of biological interest within range. For
nstance, it has become apparent that many icosahe-
ral viruses have a significant amount of their

ucleic acid in an icosahedrally ordered form (Chen
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197CRYO-ELECTRON-MICROSCOPY RECONSTRUCTION
t al., 1989; Larson et al., 1993; Grimes et al., 1998),
uggesting that, possibly, much more of the nucleic
cid than seen in crystallographic electron density
aps has a unique structure. Thus, if the virus could

e oriented by virtue of its icosahedral coat and if a
election were made among the 60 possible orienta-
ions of any one particle to match the internal
ucleic acid of another particle, then it might be
ossible to obtain extensive information on the nucleic
cid structure and fold. In other cases, it has been
hown (Al Ani et al., 1979; Casjens and Hendrix,
988) that nucleic acid is extruded from a single
ortal of an otherwise highly symmetric particle. It
s, therefore, of interest to examine symmetric par-
icles that have local distortions (e.g., at a phage
ead portal) or in which the higher symmetry exists
or only a portion of the structure.

With these problems in mind, we consider here
rocedures for image reconstruction from projected
mages in conjunction with experience in noncrystal-
ographic-symmetry electron-density averaging as
sed for solving crystal structures (Rossmann et al.,
992; Rossmann, 1995; Kleywegt and Read, 1997).
e shall assume that the projection data have been

orrected for experimental deficiencies such as astig-
atism and the effects of the phase-contrast transfer

unction. Although we borrow heavily from Crowther
t al. (1970a), we do not use spherical harmonics.
urthermore, while Crowther requires reciprocal
pace interpolation in only one dimension (to reduce
omputational complexity), we use a general three-
imensional, Cartesian-coordinate-based interpola-
ion expression.

This study has not yet progressed beyond develop-
ng the procedure with theoretical data. Whether
here are experimental advantages in these recon-
truction techniques will require tests on real data
nd, indeed, such work is currently in progress using
he data for various f29 particles (Tao et al., 1998).

DEFINITIONS

The nomenclature defined below is that used by
ossmann et al. (1992) in describing a procedure for
lectron-density averaging. The object to be recon-
tructed from a set of projections will be placed into
he ‘‘h-cell.’’ (The ‘‘h’’ and ‘‘p’’ in the terms ‘‘h-cell’’ and
‘p-cell’’ originate in early attempts to use the known
actate dehydrogenase structure—LDH in the h-
ell—to solve the unknown structure of glyceralde-
yde-3-phosphate dehydrogenase—GAPDH in the
-cell.) A point in this cell is defined as being at x,y,z
or x in vector notation) in fractional coordinates.
he complex Fourier coefficients, F(h,k,l), correspond-
ng to the electron density in the h-cell, will be
efined by the indices (h,k,l), or h in vector notation.
f the reconstructed object has some symmetry, then
t is useful to place the object into the h-cell with as

any as possible of its symmetry elements coinci-
ent with the symmetry of the repeating lattice of
he h-cell. For instance, if the object has 222 symme-
ry, then the center of the object can be placed on the
rigin of the cell with its twofold axes along the
rthogonal cell directions. Thus, some or all of the
bject’s symmetry elements can be included in the
rystallographic symmetry of the h-cell. The remain-
ng symmetry of the object will be noncrystallo-
raphic, being valid only locally within a confined
nvelope around the object.
Each projection image can be defined with respect

o its own p-cell. Positions within this cell are defined
y the fractional coordinates u,v,w (or u in vector
otation) with the w direction being perpendicular to
he projected image. The indices of the complex
ourier coefficients Qpq, representing the projected
ensity P(u,v) in the p-cell, are defined by ( p,q) (or p
n vector notation). The orientation of a particular
rojection relative to the object in the h-cell is given
y the transformation

x 5 [D]u, (1)

here [D] is a 3 3 3 matrix dependent on three
otation angles and the cell dimensions of both the
- and p-cells (see below).

RECONSTRUCTION OF AN ASYMMETRIC OBJECT
FROM PROJECTION IMAGES

Let the three-dimensional electron density of the
econstructed object in the h-cell be represented by
(x,y,z).
Since P(u,v) is a projection along w (perpendicular

o u and v),

P(u,v) 5 e
w521/2

11/2
r(x,y,z) dw. (2)

Now, r(x,y,z) can be expressed as a Fourier summa-
ion in the h-cell with coefficients F(h,k,l). Therefore,

r(x,y,z) 5
1

V o
h,k,l

F(h,k,l)e2pi(hx1ky1lz),

here V is the volume of the h-cell, or

r(x) 5
1

V o Fhe2pih·x (3)

h
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198 ROSSMANN AND TAO
n vector notation. Substituting (3) in (2),

P(u,v) 5 e
w521/2

11/2 1
1

V o
h

Fhe2pih·x2 dw.

n order to perform the integration over w, it is
ecessary to express x in terms of u by means of the
efinition (1). Then, recognizing that each term in
he summation can be separately integrated,

P(u,v) 5
1

V o
h

e
w521/2

11/2
Fh e2pih·[D]u dw

5
1

V o
h

Fh e
w521/2

11/2
e2pi(r8u1q8v1r8w) dw,

here

p8 5 d11h 1 d21k 1 d31l

q8 5 d12h 1 d22k 1 d32l

r8 5 d13h 1 d23k 1 d33l
6 (4a)

nd dij are the elements of [D]. Or, in brief,

p8 5 [DT]h. (4b)

s w is the only variable,

P(u,v) 5
1

V o
h

Fhe2pi( p8u1q8v) e
w521/2

11/2
e2pir8w dw

5
1

V o
h

Fhe2pi( p8u1q8v)
sin pr8

pr8
.

(5)

Expression (5) gives the relationship between the
hree-dimensional Fourier coefficients Fh and the
rojected density P(u,v). Experimentally, it is P(u,v)
hat is observed and derived from the electron-
icroscope data, while the Fourier coefficients Fh

re to be determined from the collection of projected
mages.

Now, the Fourier coefficients Qpq can be deter-
ined by numerical integration of the projection

ensity P(u,v) using the relationship

Qpq 5 e
A

P(u,v)e22pi(pu1qv) du dv, (6)

here A is the area of the p-cell in the u,v plane.
By substituting P(u,v) in expression (6) with (5), a

elationship can be found between the known projec-

ion coefficients Qpq and the unknown three-dimen-
ional Fourier coefficients Fh. It follows that

Qpq 5 e
A 3

1

V o
h

Fhe2pi( p8u1q8v)
sin pr8

pr8 4
3 e22pi( pu1qv) du dv

5
1

V o
h

Fh

sin pr8

pr8
e

u521/2

11/2
e2pi( p82p)u du

3 e
v521/2

11/2
e2pi(q82q)v dv

r

Qpq 5
1

V o
h

FhGhp, (7)

here

Ghp 5
sin p( p8 2 p)

p( p8 2 p)
·
sin p(q8 2 q)

p(q8 2 q)
·
sin pr8

pr8
. (8)

If the orientation of the projected image is known
elative to the standard particle orientation in the
-cell and is expressed in terms of the [D] matrix,
hen (p8,q8,r8) can be calculated for a chosen set of
ndices (h,k,l) using (4). Hence, Qpq could be calcu-
ated from the summation (7), given the three-
imensional coefficients Fh, for any specific indices
p,q). However, in practice, the coefficients Qpq are
nown, while the Fh coefficients need to be deter-
ined. Given a sufficient number of Qpq coefficients,

t is then possible to solve the Eqs. (7) for the required
hree-dimensional Fourier coefficients Fh. These can
hen be used to compute a Fourier synthesis that
epresents the reconstructed image in the h-cell.

It is unnecessary to evaluate all terms in the
ummation over h in expression (7) as most of the
erms will be negligibly small. Only the terms for
hich p8 2 p > 0, q8 2 q > 0, and r8 > 0 will be

ignificant. Thus, using (4), only the (h,k,l ) terms
hat roughly satisfy the relationship

p 5 d11h 1 d21k 1 d31l

q 5 d12h 1 d22k 1 d32l

0 5 d13h 1 d23k 1 d33l

r

1
p

q

0
2 5 [DT] 1

h

k

l
2
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199CRYO-ELECTRON-MICROSCOPY RECONSTRUCTION
or a given pair of indices (p,q) need to be considered.
hese terms are those that satisfy the plane
5 d13h 1 d23k 1 d33l, which is a plane in the

eciprocal space of the h-cell that is perpendicular to
he projection direction w.

In practice, it is useful to solve for h9 for selected
ndices ( p,q), where

1
h9

k9

l9
2 5 [DT]21 1

p

q

0
2 . (9)

hus, the (h,k,l) indices that will be associated with
ignificantly large values of Ghp are those integers
hat lie close to (h9,k9,l9). These can be substituted in
4a) to obtain (p8,q8,r8), which are necessary to evalu-
te Ghp from (8).
The summation in (7) is over all coefficients within

he limiting sphere of resolution. Thus, the summa-
ion can be rewritten as

pq 5
1

V o
h

hemisphere

GhpFh 1 GhpFh

5
1

V o
h

hemisphere

[(Ghp 1 Ghp)Ah 1 i(Ghp 2 Ghp)Bh],

here Ah and Bh are the real and imaginary parts of
h. Note also that Ghp is unlikely to be significant
xcept for low-order data. In general, therefore,

pq 5 o
h

hemisphere

ahp Ah and Tpq 5 o
h

hemisphere

bhp Bh, (10)

here Spq and Tpq are the known real and imaginary
arts of Qpq, and where the coefficients ahp and bhp
an be calculated from the assumed orientation of
he projection relative to the standard orientation of
he particle in the h-cell.

LEAST-SQUARES ANALYSIS

Because of the large experimental error in each
bservational equation of type (10), it is necessary to
ave a large excess of observational equations over
he number of three-dimensional Fourier coefficients
h that are to be determined. These observational
quations need to be reduced to a set of normal
east-squares equations for solution.

For convenience, the unknown Fh coefficients can
e numbered from 1 to m. If the particle has no
ymmetry that can be incorporated into the h-cell

attice, then the number of unknowns will be equal b
o the number of Fh coefficients in a hemisphere of
eciprocal space. However, if the particle of the h-cell
an be described as having N crystallographic asym-
etric units, then the number of unknowns will be

educed by 1/N. Thus, the observational Eq. (10) can
e written as

o
i51

m

ai Ai 5 S and o
i51

m

biBi 5 T.

he normal equations will then have the form

o
l51

n

a1la1l o
l51

n

a1la2l · · · o
l51

n

a1laml

o
l51

n

a2la1l o
l51

n

a2la2l · · · o
l51

n

a2laml

···
···

···

o
l51

n

amla1l o
l51

n

amla2l · · · o
l51

n

amlaml

2 1
F1

F2

···

Fm

2
5 1

o
l51

n

Sla1l

o
l51

n

Sla2l

···

o
l51

n

Slaml

2 ,

(11)

ith a similar set for the imaginary set of equations.
he summations are carried out over the n coeffi-
ients Qpq in the k different projections. Before
nverting the normal equations, it will be necessary
o determine whether all Fourier coefficients Fh have
een adequately represented by large enough Ghp
alues. If there is a nonuniform distribution of
rojection orientations, some Fh coefficients may not
ave significant amplitude in Eq. (7). This can be
etermined by looking for small diagonal terms in
he normal equations. A useful criterion was found
y rejecting all equations whose diagonal terms were
ess than 0.01 of the average value of the diagonal
erms. The row and column associated with such a
mall diagonal term must then be eliminated prior to
atrix inversion.

THE NUMBER OF REQUIRED PROJECTIONS

It will be necessary to have more (usually far
ore) observational equations, Qpq, than the num-
er of unknowns, Fh, whose values are to be deter-
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200 ROSSMANN AND TAO
ined. The number of Fh coefficients will depend on
he unit cell size of the h-cell and the desired
esolution, R. Since the h-cell can be defined to be
nly just larger than the largest dimension of the
nknown particle and as the p-cells represent differ-
nt projections of the same particle, it is generally
onvenient to define the h- and p-cells as being of the
ame size. For spherical objects such as viruses, it is
easonable to make both the h- and p-cells cubic in
hape with a cell edge of a. It may sometimes be
onvenient to use a trigonally shaped h-cell if, for
nstance, the object can be assumed to contain a
hreefold axis.

The volume of the reciprocal h-cell will be (1/a)3.
hus, for a cubic cell of length a, the number of
eciprocal unit cells within a resolution of R
ill be [4/3 p(1/R)3]/(1/a)3. Because of Friedel’s law,

he number of independent reflections that
eed to be determined will then be half of the
umber of reciprocal unit cells, or [2/3 p(a/R)3]. If the
bject to be reconstructed into the h-cell is as-
umed to have symmetry that can be incorporated
nto the h-cell lattice (‘‘crystallographic symmetry’’),
his will reduce the number of independent Fourier
oefficients Fh. For instance, if an object has a
3-point group and the two- and threefold axes
f the object are defined to lie along the axes and
ody diagonal of the cubic-shaped h-cell, then the
umber of independent Fh’s within the resolution

will be reduced by 1/12. Hence, if symmetry
lements are defined to create N crystallographic
symmetric units in the h-cell, then the number
f independent terms that need to be deter-
ined will be (1/N) (2/3) p(a/R)3. Now, using similar

rguments, the number of Qpq coefficients in a projec-
ion will be (p/2)(a/R)2. Thus, if k different projec-
ions are available and considering the large error in
he observed Qhp coefficients, it will be necessary to
ave

k
p

2 1 a

R 2
2

...
1

N

2

3
p 1 a

R 2
3

;

hat is,

k ...
4

3

1

N 1 a

R 2 .

able I shows the theoretical lower limit (in the
bsence of all noise) of the required number of
rojected images for a successful reconstruction to
Å resolution when a 5 500 Å and N 5 1 or 12. The

arge error associated with low-dose EM images will,

owever, greatly increase the number of images s
equired for a useful reconstruction. Henderson
1995) has considered the effect of error and con-
ludes that the number of useful images is in-
ependent of the size of the object. This result,
owever, defies common sense as the amount of

nformation necessary to reconstruct a large particle
o a given resolution must be more than that re-
uired for a small particle.

RECONSTRUCTION OF OBJECTS THAT HAVE
NONCRYSTALLOGRAPHIC SYMMETRY

If the symmetry of the object can be matched with
he symmetry of the h-cell lattice (crystallographic
ymmetry), then the number of unknowns can be
educed by the crystallographic redundancy. The
rientation matrix [D] for each projected image will
hen have to be determined (see below) with respect
o the assumed placement of the object’s symmetry
xes in the h-cell. For example, if an object’s as-
umed twofold axis is aligned with the h-cell’s b-axis,
hen the Fourier coefficients Fhkl and Fhkl will be
dentical. Thus, in evaluating the coefficients Ghp for
qs. (7) or (10), all Fourier coefficients with

ndices (h,k,l) can be replaced by coefficients with
ndices (h,k,l).

The highest symmetry of any periodic lattice is
32. Thus, not every symmetry operator of an object
an be incorporated into the crystallographic symme-
ry. For instance, an icosahedral virus has 532

TABLE I
Theoretical Minimum Number of Projected Images

Required for a Successful Reconstruction
in the Absence of All Noisea

Resolution (Å) 40 30 20 15 10

-cell
Minimum no. of projec-

tions required when
N 5 1 17 22 33 45 67

Minimum no. of projec-
tions required when
N 5 12 2 2 3 4 6

-cell
No. of independent

unknown Fh’s when
N 5 1 4091 9696 32725 77570 261799

No. of independent
unknown Fh’s when
N 5 12 341 808 2727 6464 21817

Note. It is assumed that the particle has a diameter of about
00 Å and has either N 5 1-fold or N 5 12-fold redundancy that
an be incorporated into the h-cell lattice.

a The minimum number of required projections for an icosahe-
ral reconstruction will be reduced by 1/5 when the NCS re-
traints are included in the formation of the normal equations.
owever, the number of Fh’s to be determined remains un-

hanged.
ymmetry, but only the 23 tetrahedral symmetry



(
t
v
k
l
d

a
a
d
a
s
o
t
i
d
t
i

a
r

H
w
a

w
t
d
r
t
h

w
i
T

H
p

w
S

F

w
f
t
s
c
u
r
e
e
o
E

F
r
e
g
n
i
p
c
t
a
k
u
H
p
s
o
t
i

k
(
b
s
t
o
e
s
F

201CRYO-ELECTRON-MICROSCOPY RECONSTRUCTION
with a redundancy of 12) can be incorporated into
he lattice. The fivefold symmetry present in the
irus cannot be used to reduce the number of un-
nown Fourier coefficients. Hence, this ‘‘noncrystal-
ographic’’ symmetry (NCS) must be treated in a
ifferent manner.
In contrast, Crowther (1971; Crowther et al., 1970a)

ligns the highest n-fold rotation axis (e.g., a fivefold
xis if an icosahedron) along the z-axis of the stan-
ard h-cell, thus reducing the number of variables by
factor of n. Then Crowther uses the remaining

ymmetry axes (such as the two- and threefold axes
f an icosahedron) to increase the number of observa-
ions. This implies that in many cases (e.g., an
cosahedron) the present technique requires the
etermination of fewer unknown coefficients. In addi-
ion, the method presented here is completely flex-
ble and general.

The electron density r(x) in the h-cell is equal
t all S NCS-related positions. Hence, r(x1) 5
(x2) 5 ? ? ? 5 r(xs). Now, Fh is given by

Fh 5 e
V

r(x)e22pih·x dx.

owever, r(x) can be divided into S parts, each of
hich can be separately integrated within the h-cell
nd then summed to give Fh. That is,

Fh 5 e
U 5o

s51

S

r(xs)6e22pih·xs dx,

here the integral is taken only over the volume U of
he object and assuming the rest of the cell has zero
ensity. Similar to the definition of (1) for [D] (which
elates a point in the p-cell to a point in the h-cell),
he relationship between NCS points within the
-cell can be given as

xs 5 [Cs]x, (12)

here [Cs] is the sth NCS operator relating a point xs

n the h-cell to another point x also in the h-cell.
hen,

Fh 5 o
s51

S

e
U

r(x)e22pih·[Cs]x dx. (13)

owever, the density r(x) in the h-cell can be ex-
ressed as a Fourier summation such that

r(x) 5
1

V o Fte12p it·x, (14)

t s
here the Fourier coefficients have indices s(s,t,u).
ubstituting (14) in (13)

h 5
1

V o
s51

S

o
t

Ft eU
e12pi(t2 [Cs

T]h)·x dx

5
1

V o
s51

S

o
t

FtGht,

(15)

here Ght is the integral in the above expression. If,
or instance, the object is a spherical virus, then
he limits of the integral can be taken as a
phere, in which case Ght can be expressed analyti-
ally as in expression (8) with an argument of
5 2pHR, where H 5 0 (t 2 [Cs

T]h) 0 and R is the
adius of the limiting sphere representing the viral
nvelope. Note that the coefficients, Ght, of these
quations are always the same, independent
f what orientation had been assumed to derive
q. (10).
Equation (15) can be written for all m independent

ourier coefficients Fh within the limit of the desired
esolution. The number of significant terms in each
quation will depend on the NCS redundancy S. The
reater the redundancy, the greater will be the
umber of terms with significantly large (approach-

ng unity) Ght terms and, hence, restricting the
ossible relationships among the Fourier coeffi-
ients. Each Eq. (15) will be an observational equa-
ion relating the m unknown Fh coefficients. These
re of the same form as Eqs. (7) or (10) relating the
nown projection Fourier coefficients Qpq with the
nknown three-dimensional Fourier coefficients Fh.
ence, Eq. (15) can be added to the normal Eqs. (11)
rior to inversion. Thus, while the crystallographic
ymmetry elements can be constrained to determine
nly the crystallographic symmetry-independent Fh

erms, the NCS is applied as a series of restraints to
mpose a desired relationship among the Fh’s.

FINDING THE ORIENTATION OF AN OBJECT

The observational Eqs. (7) or (10) depend upon a
nowledge of the object’s orientation given by [D]
Eq. (1)). If a false value of [D] were used, it would not
e possible to find a set of Fh coefficients that would
atisfy Eqs. (7) or (10). Thus, a technique for finding
he orientation of an object is to test all possible
rientations of the particle in the h-cell. The normal
quations are then set up for each orientation and
olved for Ah and Bh from which Fh is calculated. The
h values can be substituted back in the right-hand

ides of (10) to obtain a calculated set of Qpq,calc. The
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202 ROSSMANN AND TAO
alculated Qpq,calc values are then compared with the
bserved values Qpq,obs (derived from a Fourier trans-
orm of the projected densities).

The search algorithm can be stated in terms of the
ollowing instructions.

1. Define the arbitrarily chosen asymmetric unit
f the N crystallographic symmetry elements in the
-cell.
2. Select a point given by polar coordinates (k,c,f)
ithin the reference crystallographic asymmetric
nit of the h-cell and calculate the orientation matrix

D] relating the p- to the h-cell.
3. Determine the coefficients ahp and bhp of the

bservational Eqs. (10) for each two-dimensional
ourier coefficient Qpq,obs of the selected projection

mage. Add the contribution of each observa-
ional equation to the normal equations as shown
y (11).
4. Add the NCS restraints given by (15) if appro-

riate. Note that the coefficients of the NCS restrain-
ng equations are the same for every orientation. The
CS restraints merely specify relationships among

he Fh Fourier coefficients.
5. Solve the normal equations for the unknown,

hree-dimensional, h-cell Fourier coefficients Ah

nd Bh.
6. Substitute the calculated values of Ah and Bh

nto the right-hand sides of (10) to obtain calculated
alues of Qpq,calc.
7. Compare Qobs with Qcalc by using the four

ifferent criteria

1 5

o
n

0 ( 0Qobs 0 2 k 0Qcalc 0 ) 0

o
n

0Qobs 0

3 100 (factor based on amplitude),

here k is a scale factor and the sum is over all n Qobs

alues for the projection within the chosen resolu-
ion limits;

R2 5

o
n

0 (aobs 2 acalc) 0

n
(factor based on phases),

here aobs and acalc are the phases of Qobs and
calc, and their difference is taken as being the
hortest distance around a circle of phases from 0° n
o 360°;

3 5

o
n

[0Qobs 0
2 1 0Qcalc 0

2 2 20Qobs 00Qcalc 0 cos (acalc 2 aobs)]

1o
n

0Qobs 0
2 · o

n
0Qcalc 0

221/2

100 (factor based on amplitudes and phase vectors);

nd

C 5

o
n

(G0Qobs 0H 2 0Qobs 0)(G0Qcalc 0H 2 0Qcalc 0)

3o
n

(G0Qobs 0H 2 0Qobs 0)2

3 o
n

(G0Qcalc 0H 2 0Qcalc 0)241/2

(based on amplitudes),

here CC is the correlation coefficient.
The Ghp values in (7), which give rise to the ahp and

hp coefficients in (10), are dependent only on the
rientation of the projection direction w in the h-cell.
owever, the coefficients Qpq in (7), corresponding to

he Spq and Tpq terms in (10), are determined from
he projected image data. Thus, the normal Eqs. (11)
eed only be inverted once for each direction w.
earch for the rotation, k, about w can be achieved
y interpolating Qpq at rotated values of the two-
imensional projected p-cell lattice, giving rise to
ifferent Spq and Tpq terms for each value of k. Thus,
he search over k for a given orientation w is fast.

8. Go back to step 2 until all points have been
xplored. Map the result and look for minima in R1,
2, and R3 or maxima in CC to obtain the object’s
rientation.
The different criteria may not always give the

ame discrimination (see, for instance, Table VII).
owever, in general R3 appears to be the most

ensitive criterion, being dependent on both ampli-
udes and phases.

The above procedure is useful for finding the
rientation of a particle with ample symmetry in the
bsence of any other structural knowledge. It is,
herefore, akin to the ‘‘common-lines’’ procedure of
rowther et al. (1970a) and could be compared to a

‘self-rotation function’’ in crystallography (Ross-
ann and Blow, 1962). Although these calculations

re quite time-consuming, the orientation of any
umber of projections can be determined simulta-

eously because the right-hand sides of (10) are
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203CRYO-ELECTRON-MICROSCOPY RECONSTRUCTION
ependent only on (k,c,f) and not on Qpq. Thus, the
ight-hand sides of (10) need only be computed and
nverted once and then used to examine the orienta-
ion of each projection.

When a reasonable three-dimensional model of the
bject is already available, say by combining the
esults of a few initial projections, the resultant Fh
alues can be used as in steps 6, 7, and 8 above to
etermine which projection of the current model
ives two-dimensional Qpq coefficients closest to the
bserved set. This procedure is not only much faster,
ut gives better results provided a reasonable
tarting Fh set is available. It is equivalent to the
olar Fourier transform (PFT) method (Baker and
heng, 1996) or a cross-rotation function (Ross-
ann and Blow, 1962) against a known model in

rystallography.

DEFINING A COMMON ORIGIN IN EACH
PROJECTED IMAGE

The phases of the observed Qpq Fourier coefficients
ill depend on the selected origin within the image.
urthermore, on combining data from each image

each Qpq from every image gives rise to an observa-
ional Eq. (7) or (10)), it was assumed that the
rientational relationship (1) places the common
rojection origin onto the origin of the h-cell. A
easonable common projection origin can be defined
oderately easily for spherical particles by estimat-

ng the site of the center of the particle, although this
ay need a little refinement. A search over a much

arger area will be required for an asymmetric object.
A shift in the projection origin to the point (Du,Dv)
ill change the phase of the Qpq coefficients by

p(pDu 1 qDv). This change will affect only the values
f S and T in the left-hand sides of Eqs. (10). Since the
atrix need only be inverted once for the given (k,c,f)

alue, the additional search over Du and Dv is fast.

FIG. 1. Definition of the limits of an icosahedral asymmetr

howing great circles through icosahedral twofold axes and the limits of o
MATRIX ALGEBRA

Let the h-cell coordinate axes be x,y,z. These will
ow be rotated to correspond to the projected image
f the object in the p-cell with axes u,v,w. First,
otate the x,y,z system about z by c to place the axes
t x8,y8,z8. Then, rotate about x8 by f to place the axes
t x9,y9,z9. Finally, rotate by k about z9 to place the
xes at x-,y-,z- where these axial directions are now
oincident with u,v,w. Hence,

1
u

v

w
2 5 1

cos k3 sin k3 0

2sin k3 sin k3 0

0 0 1
2 1

1 0 0

0 cos f2 sin f2

0 2sin f2 cos f2
2

3 1
cos c1 sin c1 0

2sin c1 cos c1 0

0 0 1
2 1

x

y

z
2

5 [D21]

y comparison with Eq. (1).
If the object to be reconstructed is an icosahedron
ith 532 symmetry, it is convenient to orient the

cosahedral axes along the x,y,z axes of the h-cell.
owever, that still allows two different orientations

f the icosahedron related by a 90° rotation about
ny one of the h-cell axes. The definition of the
tandard icosahedral orientation used in the results
iven here is shown in Fig. 1. This icosahedron can
e generated by applying in order the operators
iven in Table II.

DIFFERENTIATING BETWEEN CRYSTALLOGRAPHIC
AND NONCRYSTALLOGRAPHIC SYMMETRY

The assumed symmetry of the object to be recon-
tructed from projection data can be given in terms

. (a) The polar coordinates (k,c,f). (b) Stereographic projection
ic unit

ne, arbitrarily selected, asymmetric unit (shaded).
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204 ROSSMANN AND TAO
f a sequential series of symmetry operations defined
y the polar coordinates (k,c,f). Table II gives an
xample for generating an icosahedral distribution
f 60 points in the h-cell. If the h-cell is defined as
eing of cubic shape, these 60 points can be sepa-
ated into 5 sets of 12 each, where the 12 points
ithin a set are related by the crystallographic

ymmetry of the h-cell lattice. In order to compute
he coefficients in Eqs. (10), it will be necessary to
elect only the crystallographic symmetry operators,
hereas the coefficients in Eq. (15) depend on the
oncrystallographic symmetries. Thus, the opera-
ors that define the full symmetry of the object in the
-cell must be separated into crystallographic and
oncrystallographic operators with respect to the
ell parameters that were used to define the h-cell.

Let [Rs] (s 5 1, 2, . . ., S) be the rotation matrices
enerated by the sequential symmetry operators
uch as those given in Table II. Let [a] and [b] be
eorthogonalization and orthogonalization matrices
or the h-cell (see Rossmann and Blow, 1962). Then,

xs 5 [a][Rs][b]x (16)

Rossmann and Blow, 1962) and

[Cs] 5 [a][Rs][b].

ow, if this represents a crystallographic operation
nd if x is the position of a lattice point, then xs
hould also be a lattice point. Thus, if x is the point
100), then xs should have coordinates that are
ntegers to within rounding error. Testing the points
100), (010), and (001) in turn will, therefore, estab-
ish whether the operation is a crystallographic
peration. All other operators will be noncrystallo-
raphic.

DEFINING THE ASYMMETRIC UNIT IN REAL
AND RECIPROCAL SPACE

When exploring the possible orientation of a pro-
ected object relative to the orientation of the symme-
ry elements in the h-cell, it is necessary only to

TABLE II
Sequential Operators That Generate 532 Symmetrya

umber k c f

1 72.0 31.71747 290.0
2 180.0 36.0 2148.28253
3 180.0 36.0 148.28253
4 120.0 57.7356 245.0

a The definition of the polar coordinates is the same as for those
efined by Rossmann and Blow (1962).
xplore the asymmetric unit of the object. There will d
e an equivalent orientation for particular (k,c,f)
ngles in each of the object’s asymmetric units. For
nstance, if the object has icosahedral symmetry,
hen the asymmetric unit can be defined as a tri-
ngle limited by a fivefold axis and two threefold
xes (Fig. 1). It will, therefore, be necessary to
enerate a set of (k,c,f) that are limited to an
symmetric unit. This can be readily achieved by
xploring all angles in the range 0 # k , 360°, 0 #

, 180°, 0 # f , 360°, from which those in the
symmetric unit are then selected as follows. The
-cell coordinates are calculated for each set of
ngles (k,c,f) from

X 5 sin c cos f

Y 5 2sin c sin f

Z 5 cos c
6 . (17)

ll S symmetry-related positions are then calculated
sing the matrices [Rs] (s 5 1, 2, . . . , S) and sorted

n terms of Z (most significant) and X (least signifi-
ant). Then, arbitrarily always selecting the top
oordinates from the sorted list is equivalent to
electing the coordinate within the asymmetric unit
f the object. Hence, if the original X,Y,Z is the same
s that at the top of the sorted list, then the chosen
k, c,f) angles must be within the asymmetric unit of
he object.

The same technique can be used to define the
symmetric unit of reciprocal space. However, in this
ase, the symmetry operators will be the crystallo-
raphic operators doubled by virtue of an additional
enter of symmetry at the origin of reciprocal space.
s the operators were defined for real space (Table

I), the operators in reciprocal space, when ex-
ressed as a rotation matrix, will be the transpose of
hose in real space. The Fourier coefficients (limited
o a selected resolution limit) found to be in the asymmet-
ic unit of reciprocal space are numbered in the se-
uence in which they are generated. That will then be
he sequence of unknowns (1 to m) used for Eqs. (11).

REAL SPACE VERSUS RECIPROCAL SPACE

Although the above procedures have been de-
cribed in reciprocal space, very similar procedures
an be used in real space. In reciprocal space, the
wo-dimensional Fourier coefficients Qpq, correspond-
ng to various projections P(u,v), were used to deter-

ine the Fourier coefficients Fh representing the
nknown object in three dimensions. It would be
qually possible to take the projected densities P(u,v)
nd solve directly for the densities r(x,y,z). The h-cell
an be divided into a three-dimensional grid using a
aster size commensurate to the resolution of the

ata. The asymmetric unit in the h-cell can be
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205CRYO-ELECTRON-MICROSCOPY RECONSTRUCTION
efined as above, and the grid points within the
symmetric unit can be numbered sequentially. The
roblem is then to determine the electron density at
ach of the numbered grid points.
Any projection point P(u,v) corresponds to the sum

f the electron density along a line, w, normal to the
rojection as given by (2). The density along any
iven line along w can be represented by densities at
series of grid points separated by a distance that is
bout the same as the distance between the grid
oints in the h-cell. Each of these points will be
urrounded by numbered grid points in the h-cell
rid. Thus, if the density in the h-cell were known,
hen the density at the points along the line w could
e interpolated from the, say, eight surrounding
-cell grid points. For instance, the density at the
oint u,v,w can be expressed as

r(u,v,w) 5 o
i51

8

air(xi,yi,zi), (18)

here i signifies the eight surrounding points used
or interpolation and ai is the interpolant whose
alue will depend on the distance of the point
,v,w from the point xi,yi,zi. Thus, combining (2) and
18) gives an expression of the density P(u,v) in
erms of the known interpolants ai and the unknown
ensities ri(x,y,z). Whenever a density r(x,y,z) is
equired for interpolation, but is outside the asym-
etric unit of the h-cell, then the symmetry-

quivalent density must be used from within the
symmetric unit. The expression (18) represents the
bservational equations, which can then be solved
or r(x,y,z) in the same manner as was used for
olution of the equivalent reciprocal space Eqs. (7)
r (10).
There is, however, an important difference be-

ween real and reciprocal space, namely the number
f unknowns that need to be determined. Because in
eal space it is necessary to sample the density
ufficiently closely to obtain a realistic continuous
istribution, it is generally necessary to sample
ensity at intervals equivalent to at least one-third
f the resolution. Thus, in three dimensions the
umber of unknowns that need to be solved will be
bout 27 times greater in real space than in recipro-
al space. This creates an enormous computational
urden, even for problems at very low resolution. For
his reason, it is better to employ reciprocal space,
lthough real space is easier to comprehend.

PHASE EXTENSION TO HIGHER RESOLUTION

The number of unknowns that need to be deter-
ined rises in proportion to the cube of the resolu-
ion. For an object of 500-Å diameter with icosahe- d
ral symmetry, it is necessary to solve a linear 3412

iagonally symmetric matrix to determine the un-
nown Fh coefficients to 40-Å resolution (Table I).
his is not an especially severe problem on even a
low modern workstation. However, at 10-Å resolu-
ion the problem has escalated to a 21 8172 symmet-
ic matrix.
Experience with phase extension for crystallo-

raphic electron density averaging (Rossmann, 1990)
uggests a technique for reducing the computing
ffort. Fourier coefficients Fh at low resolution can be
etermined initially, and these are unlikely to change
ignificantly as the resolution is extended. Hence,
heir values can be assumed and taken to the
ight-hand side of Eqs. (7) or (10), thus reducing the
umber of unknowns that need to be solved simulta-
eously. This procedure can be used to further
xtend the resolution in steps. The lowest resolution
hases can be redetermined, this time accepting all
he already determined coefficients at higher resolu-
ion. Unless the orientation of the individual projec-
ions is refined, the matrices for determining Fh at
ach resolution extension will not change from cycle
o cycle. Thus, it will be fast to repeatedly cycle over
uccessive resolution ranges for phase improve-
ents between phase extensions.

TEST CALCULATIONS

The icosahedral atomic structure of human rhino-
irus 16 (HRV16) (Oliveira et al., 1993) was used as a
est model for the reconstruction procedure de-
cribed above. The maximum external diameter of
his virus is 315 Å. The atomic model (Protein Data
ank Accession No. 1AYN) was placed into a cubic
ell with a 5 400 Å, with the icosahedral axes
riented as given in Table II and shown in Fig. 1b.
tructure factors were calculated to 10-Å resolution,
lthough the current tests used only data to 40-Å
in some cases) or 35-Å (in other cases) resolution.

TABLE III
The Rotation Function Peaksa for k 5 72°

at 40-Å Resolution

eak
no. c f

Rotation
function value

Number of s above
mean backgroundb

1 30.0 270.00 69.3 3.64
2 15.0 258.76 14.8 0.00
3 16.5 241.72 14.4 20.03
4 18.0 232.12 13.9 20.06
5 18.0 345.80 10.2 20.31

Note. The values are for the HRV16 structure placed into the
-cell in a standard orientation.

a A total of five peaks were found in a search with 1.5° intervals
n c.

b Calculated from all points at 1.5° intervals within the icosahe-

ral asymmetric unit.
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206 ROSSMANN AND TAO
The first test was to check that the virus orienta-
ion was correct by calculating a rotation function
Rossmann and Blow, 1962) evaluated at 1.5° inter-
als in c and correspondingly equally spaced values
n f within the icosahedral asymmetric unit. This
as easily performed with the routine used for

etting the noncrystallographic constraints with Eqs.
15). A general peak-picking routine selected explicit
eaks, as opposed to merely seeking grid points with
arge values of the function. The results showed
eaks that were well above background at the antici-
ated NCS positions (Table III).
The Fourier coefficients for four different projec-

ions (Table IV) were calculated using expression (7).
n this calculation, as well as in all subsequent
alculations, the Ghp coefficients were used with a
3 3 3 3 interpolation box with its center closest to

he nonintegral point (h9,k9,l9) (see expression (9)).
he outside radius of the virus was assumed to be

TABLE IV
Polar Angles Defining the Orientations

of Four Arbitrary Projections

rojection k c f

Number of independent
coefficients, Qpq, at

35-Å resolution

1 0.0 16.5 308.57 206
2 0.0 12.0 244.80 206
3 0.0 10.5 270.00 206
4 0.0 1.5 225.00 206

TA
Reconstruction of 308 Three-Dimension

(a) Using 4 projection

(i) With fivefold NCS restraints (

esolution (Å) 110.7 78.3 63.9 55.3
cale (k) 0.969 1.008 0.991 1.02
1 (amplitudes, %) 22.1 12.3 7.3 7.0
2 (phases, °) 11.7 12.2 1.9 15.8

(ii) Without restraints (num

cale (k) 1.002 0.994 1.000 1.01
1 (amplitudes, %) 0.7 2.1 2.3 2.8
2 (phases, °) 4.0 0.5 0.4 2.1

(b) Using 3 projectio

(i) With fivefold NCS restraints (

esolution (Å) 110.7 78.3 63.9 55.3
cale (k) 0.970 1.034 1.027 1.04
1 (amplitudes, %) 22.1 15.6 9.1 7.8
2 (phases, °) 11.7 19.8 2.3 10.5

(ii) Without restraints (num

cale (k) 1.002 1.001 0.989 1.03
1 (amplitudes, %) 0.9 3.2 7.2 8.4
2 (phases, °) 4.2 1.4 0.8 4.0
70 Å for these calculations. This will truncate the
xpansion in G just before the first node.
The four sets of two-dimensional Fourier coeffi-

ients were then used in various combinations to
e-create the 35-Å resolution Fh data set. The ‘‘recon-
tituted’’ 308 independent Fh coefficients could then
e compared with the original ‘‘true’’ coefficients to
etermine how well the procedure had succeeded
Table V). With four projections, using no NCS
estraints, the results were very satisfactory. There
as little difference when three projections were
sed, although the R-factors were very slightly worse.
owever, with two projections, the number of obser-

ations was distinctly worse, particularly when cer-
ain rather similar projections were used. Using only
ne projection, where the number of Qpq coefficients
as less than the number of Fh coefficients, the

esults were essentially random (Table V). However,
n applying NCS restraints, one projection was
mple for producing a good reconstruction of the
riginal Fh coefficients.
The next test was to determine whether the orien-

ation of a projection could be determined given at
east an approximate set of Fh values. For this, a
et of Fh values was reconstructed using projections
, 3, and 4 with NCS restraints (Table IV), and these
ere used to find the orientation of projection 1. A

earch was conducted over c,f within the icosahe-
ral asymmetric unit using 1.5° intervals in c. f
as computed (as explained for the rotation func-

ion) to give 1.5° between projection normals for any

V
V16 Fh Coefficients to 35-Å Resolution

, 3, and 4 in Table IV)

r of solvablea Fh values was 308)

9.5 45.2 41.8 39.1 36.9 35.0
1.049 1.093 1.143 1.152 1.329 1.031
9.5 11.1 21.5 16.4 26.5 26.8

11.0 9.2 16.4 11.2 20.0 22.0

olvablea Fh values was 259)

1.003 0.948 0.982 1.001 1.001 0.992
2.0 9.5 6.8 5.2 2.7 2.0
2.7 2.2 3.9 1.3 1.6 2.6

, and 3 in Table IV)

r of solvablea Fh values was 308)

9.5 45.2 41.8 39.1 36.9 35.0
1.065 1.171 1.131 1.229 1.321 1.104
9.5 12.4 21.8 22.5 27.6 33.9
2.3 13.9 20.4 15.4 21.1 26.3

olvablea Fh values was 245)

1.019 0.954 0.971 1.014 1.010 0.988
5.1 16.7 10.7 7.2 4.4 2.9
4.2 5.1 6.2 1.2 2.0 4.0
BLE
al HR

s (1, 2

numbe

4
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207CRYO-ELECTRON-MICROSCOPY RECONSTRUCTION
pecific value of c. The satisfactory results are given
n Table VI.

Finally, a search was calculated where no prior
nformation on the Fh values was assumed to be
vailable. The data for projection 1 were used to

TABLE

(c) Using 2 project

(i) With fivefold NCS restraints (

esolution (Å) 110.7 78.3 63.9 55.3
cale (k) 0.964 1.039 1.052 1.05
1 (amplitudes, %) 23.2 18.4 11.1 9.3
2 (phases, °) 11.8 25.3 2.6 13.9

(ii) Without restraints (num

cale (k) 1.005 1.006 0.989 1.05
1 (amplitudes, %) 1.4 4.5 9.0 10.8
2 (phases, °) 5.5 2.7 0.9 7.2

(d) Using 1 projec

(i) With fivefold NCS restraints (

esolution (Å) 110.7 78.3 63.9 55.3
cale (k) 0.935 1.035 1.133 1.07
1 (amplitudes, %) 26.0 27.4 18.4 15.8
2 (phases, °) 11.9 35.4 12.7 23.0

(ii) Without restraints (num

cale (k) 0.974 0.562 0.185 0.03
1 (amplitudes, %) 5.8 63.2 85.4 143.9
2 (phases, °) 22.4 45.3 75.6 74.2

Note. The two-dimensional Fourier projection coefficients Qpq,o
hese were then used to recalculate the two-dimensional Qpq,calc co
a The number of solvable Fh values equals those whose diagona

alue of all the diagonal terms.

TABLE VI
Orientation Search for Projection 1 Given

Three-dimensional Fh Coefficients Calculated
from Projections 2, 3, and 4

eak
No. c f

R1
(amp)

(%)

R2
(phases)

(°)

R3
(vec)
(%) CCa sb

1 16.5 308.57 8.7 24.1 13.4 0.9749 4.32
2 19.5 245.85 23.7 51.6 74.7 0.7839 2.56
3 22.5 250.43 29.5 67.6 131.4 0.6637 0.94
4 4.5 360.00 33.3 73.6 139.1 0.6269 0.72
5 30.0 271.48 33.4 79.3 139.7 0.5781 0.70
A A A A A A A A

14 10.5 212.73 30.1 84.3 194.0 0.6235 20.86

Note. Shown are individual peaks sorted by R3 (vec) (%). A total
f 14 peaks were found in the search conducted with 1.5° intervals
n c.

a CC is correlation coefficient.
c
a

alculate a set of Fh values using NCS restraints.
hese were then used to obtain a calculated set of
pq that were compared with the corresponding

bserved values. The results are given in Table VII
nd also show acceptable results, but not as good as

ntinued

and 2 in Table IV)

r of solvablea Fh values was 308)

9.5 45.2 41.8 39.1 36.9 35.0
1.087 1.194 1.144 1.266 1.348 1.146
0.7 15.1 23.8 22.1 29.6 34.6
3.6 14.7 24.1 16.5 20.9 26.8

olvablea Fh values was 244)

1.034 0.924 0.952 1.032 0.987 0.964
0.4 19.7 17.8 17.1 7.7 7.1
5.5 9.5 8.6 3.5 8.3 5.1

ly (1 in Table IV)

r of solvablea Fh values was 308)

9.5 45.2 41.8 39.1 36.9 35.0
1.145 1.232 1.216 1.255 1.417 1.171
1.8 18.2 26.3 25.2 30.8 37.7
5.8 22.5 22.0 17.9 25.5 28.5

solvablea Fh values was 85)

0.148 0.054 0.081 0.071 0.122 0.076
5.1 92.9 111.1 90.2 91.6 133.3
1.1 75.6 88.2 77.7 83.5 60.8

used to compute the three-dimensional Fourier Fh coefficients.
nts for comparison with the original Qpq,obs.
s in the normal equations were greater than 0.01 of the average

TABLE VII
Orientation Search for Projection 1 Given the Projection

Two-Dimensional Qpq Fourier Coefficients
to 35-Å Resolution

eak
No. c f

R1
(amp)

(%)

R2
(phases)

(°)

R3
(vec)
(%) CCa sb

1 16.5 308.57 9.6 31.6 13.1 0.9747 2.52
2 19.5 302.93 15.5 46.6 29.5 0.9218 1.40
3 18.0 331.58 17.9 33.6 29.7 0.9077 1.39
4 15.0 219.38 15.3 38.8 31.2 0.9282 1.28
5 19.5 245.85 14.6 43.7 32.4 0.9319 1.20

A A A A A A A A
24 30.0 271.48 23.0 62.0 69.5 0.8237 21.32

Note. Shown are individual peaks sorted by R3 (vec) (%). A total
f 24 peaks were found in the search conducted with 1.5° intervals
n c.

a CC is correlation coefficient.
V—Co

ions (1

numbe

4
7

1
1

ber of s

2
1

tion on

numbe

4
3

1
1

ber of

8
7
9

bs were
efficie
l term
b s is the number of standard deviations above the mean for all
alculated values of R3 (vec) within the noncrystallographic
symmetric unit.
b s is the number of standard deviations above the mean for all
alculated values of R3 (vec) within the noncrystallographic
symmetric unit.



t
w

p
o
(
d
t
n
L
o
t
p
e
b

w
g
g
p
t
s
t

A

B

B

C

C

C

C

C

C

C

D

F

F

G

H

H

H

K

L

O

O

P

R

R

R

R

R

S

S

T

208 ROSSMANN AND TAO
hose obtained when an approximate set of Fh values
as already available.

CONCLUSIONS

The experiments with HRV16 established that
rocedures discussed here are successful in the case
f perfect data. Testing with real experimental data
Tao et al., 1998) has only just begun. The procedure
iscussed here requires further development. A posi-
ional peak search has not yet been implemented,
or has the stepwise phase extension been tested.
east of all has there been an attempt to find a specific
rientation of the RNA or DNA component in viruses or
o examine other partially asymmetric objects using
arts of the structure with higher symmetry. How-
ver, the techniques are completely general and can
e made to accept any arbitrary symmetry.
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heir help in the preparation of the manuscript. The work was
upported by grants from the National Institutes of Health and
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